
A FRAMEWORK FOR DEVELOPING ARTIFICIAL INTELLIGENCE FOR
AUTONOMOUS SATELLITE OPERATIONS

Jason L. Anderson1, Dr. Franz J. Kurfess2, and Dr. Jordi Puig-Suari3

1California Polytechnic State University, 1 Grand Ave, San Luis Obispo, USA, jander06@calpoly.edu
2California Polytechnic State University, 1 Grand Ave, San Luis Obispo, USA, fkurfess@calpoly.edu
3California Polytechnic State University, 1 Grand Ave, San Luis Obispo, USA, jpuigsua@calpoly.edu

ABSTRACT

In the world of educational satellites, student teams man-
ually conduct operations daily. Educational satellites typ-
ically travel in a Low Earth Orbit allowing communica-
tion for approximately thirty minutes each day. Manual
operations during these times is manageable for student
teams as the required manpower is minimal. The inter-
national Global Educational Network for Satellite Op-
erations (GENSO), however, promises satellite contact
upwards of sixteen hours per day by connecting earth
stations globally through the Internet. This large in-
crease in satellite communication time makes manual stu-
dent operations unreasonable and alternatives must be ex-
plored. This paper introduces a framework to conduct au-
tonomous satellite operations using different AI method-
ologies. This paper additionally demonstrates the frame-
work’s usability by introducing a sample rule-based im-
plementation for Cal Poly’s CubeSat, CP3.

Key words: Autonomous/Automated Operations; Lights
Out Operations; Earth Station.

1. INTRODUCTION

There are many different operational satellites in orbit
at the moment with missions ranging from scientific
payloads provided by NASA’s Jet Propulsion Labora-
tory (JPL) [Lab09b] to commercial communication mis-
sions such as Direct TV services [TV09]. Each of these
satellites, however, requires an operations team to mon-
itor the spacecraft and solve potential problems. These
operations are well understood, repetitive tasks making
spacecraft operations a perfect candidate for automation
[HLS96].

Satellite operations can also be expensive to maintain for
any sustained period of time. NASA operation centers
are typically staffed 24 hours a day, 7 days a week which
adds up over time [HLS96]. For instance, LandSat 7 re-
quires approximately $20 million per year for operations
[Tho03]. If automation made it possible to reduce this

budget by even 5% ($1 million), the direct savings alone
would be enough to adopt an automated system.

In order to provide students with the necessary skills
to work in the Aerospace industry, Stanford in coordi-
nation with the California Polytechnic State University
(Cal Poly) has developed the CubeSat standard [Chi09].
CubeSats are small 10cm3 satellites weighing less than
a kilogram [Too07]. The concept is that small satellites
can be developed in approximately 2 years, allowing stu-
dents to be involved in the design, development, testing
and operations of a complete spacecraft. There are cur-
rently over 30 CubeSats in orbit at various mission stages
[KAL09].

Figure 1. CP3, Cal Poly’s Third CubeSat

Unlike some NASA missions which have near constant
contact with their spacecraft, CubeSat orbits are such that
only 30 minutes of contact is available per day [Hue06].
CubeSat operations therefore require a small amount of
manpower and currently does not warrant a fully auto-
mated system as CubeSat teams often have 10 or more
members. A simple rotation schedule is enough to ensure
that all satellite passes are utilized.

While the current CubeSat operations situation does not
require automated operations, the Global Educational
Network for Satellite Operations (GENSO) will soon

Proc. ‘IJCAI–09 Workshop on Artificial Intelligence in Space’, Pasadena, California, US
17–18 July 2009 (ESA SP-673, September 2009)

Figure 2. LEO Ground Coverage Using the GENSO Network

greatly increase the potential operations time [For09].
GENSO is a project which promises increased educa-
tional satellite (ie. CubeSats) communication time by
connecting earth stations all over the world through the
Internet [SK07]. For example, when Cal Poly’s CP3 is
within communication range of the University of Aal-
borg, Denmark’s earth station, Cal Poly can command
CP3 via the Internet through Aalborg’s station. An im-
portant point is that earth station sharing is bidirectional
so that when Aalborg’s satellite AAUSat-II is within
communication range of Cal Poly, Aalborg can command
their satellite using Cal Poly’s earth station.

When GENSO is completed, it will increase satellite
communication time from 30 minutes per day to approx-
imately 16 hours per day which will proportionally raise
the amount of manpower required for operations by 32
times. Since this substantial increase cannot be feasibly
compensated by adding more student labor, another solu-
tion, automation, must be explored for educational satel-
lites.

Figure 3. Time Available per Day to Conduct Ops Before (left)
and After (right) GENSO

There have been many spacecraft automation systems de-
veloped over the years but none specifically for CubeSat
satellites. In order to have the flexibly to quickly develop
different AIs for automation, an easy to use framework is
required. In order to develop a framework for conduct-
ing autonomous spacecraft operations, knowledge pos-
sessed originally by a human operator needs to be en-
coded into the computer. One method of accomplishing
this is using a rule based system. This paper’s imple-
mentation encodes the information required to operate
Cal Poly’s CP3 satellite into JESS (Java Expert System
Shell). The type of information encoded includes what
low level commands are needed to accomplish high level

satellite tasks, expected satellite responses as well as ac-
tions to correct unexpected satellite behavior. The last
enables the system to recover from errors which occur
onboard the satellite.

This implementation also explores the possibilities of a
learning knowledge base. That is when the earth station
receives an unexpected response which it does not know
how to handle, it tries to determine the most probable so-
lutions and executes them. Once the problem is believed
to be resolved, the system then resumes and resends the
originally requested command. It is important to note that
the knowledge base knows what is unsafe for the satellite
and never executes commands which are potential harm-
ful.

Autonomous spacecraft operations enable earth stations
to operate spacecraft with minimal human intervention.
The autonomous spacecraft operations field has greatly
progressed over the last fifty years but has yet to be fully
realized.

2. LITERATURE REVIEW

One of the first attempts to increase autonomy and reduce
the manpower required for operations is NASA God-
dard’s Generic Spacecraft Analyst Assistant (GenSAA)
[HL91]. GenSAA is an expert system that advises hu-
man operators about potential spacecraft issues and prob-
able causes/solutions [LK03]. The system is written us-
ing a rule-based system called CLIPS [Ril09]. GenSAA’s
novel idea is to abstract the rule-based system behind an
intuitive GUI so that domain experts can graphically cre-
ate the rule base by defining the satellite’s model and
specifying restrictions.

The next step in automation came once again from NASA
Goddard in the form of the Generic Inferential Executor
(GENIE). GENIE is a tool which allows individuals to
easily create pass script templates to encode the tasks nec-
essary to mimic a flight operations team [HLS96]. Using
a similar graphics library to GenSAA’s, GENIE continu-
ously shows the user the pass script’s current execution
step.

Figure 4. Timeline of Relevant Automated Operation Systems

Another innovative pass automation system is NASA
Goddard’s Lights Out Ground Operations System (LO-
GOS) which is a more direct attempt at reducing man-
power through the use of software agents to automate
all human processes for operating a spacecraft [THK99].

These ground-based agents work in coordination with on-
board agents to complete the autonomy. The agents rep-
resenting different functionality were kept separate rather
than combined into one large agent in the hope of discov-
ering emergent behavior. LOGOS utilizes the power of
GenSAA/GENIE in a single agent whose sole job is to
determine the next command to send and handle any pos-
sible anomalies.

The final system which automates satellite operations is
NASA JPL’s Automated Scheduling and Planning Envi-
ronment (ASPEN). ASPEN’s primary role is to accept a
number of high-level goals and generate a set of low-level
activities that satisfy the goal [CRK+00]. To allow a user
expressive control of the spacecraft model, an improved
modeling language was introduced. The modeling lan-
guage is more expressive than GenSAA/GENIE’s and in-
cludes constraints such as parameter dependency.

Additionally, ASPEN consists of a real-time component
called the Continuous Activity Scheduling Planning Ex-
ecution and Replanning (CASPER). CASPER is respon-
sible for modifying the current activity plan as time pro-
gresses based on events which occur after the initial plan
has been created. For instance, CASPER was used on the
spacecraft Earth Orbiter 1 (EO-1) to allow the satellite
to change its current task if another task becomes more
beneficial to execute at that moment [CST+03]. For ex-
ample when EO-1 detects a rare phenomenon occurring
such as a volcano eruption, EO-1 will suspend its current
task and focus on the volcano eruption. This ability to
tweak generated plans has been key to EO-1 success.

While there have only been a few successful ground-
based automation systems created, this research has been
minimized due to an increased focus on onboard auton-
omy. There are many benefits for having autonomy on-
board the spacecraft such as quick mission adaptability
and higher quality scientific data [LJO+]. The only rea-
son for earth station automation is to reduce the required
operations manpower [EFS+04] and with NASA’s large
budget, earth station operators are cheap compared to the
increased risk introduced by fully automating operations.

3. FRAMEWORK DESIGN

In order to provide an extensible framework which can be
used to quickly develop automated operation systems, the
Autonomous Spacecraft Operations Framework is imple-
mented in Java and consists of a few modular compo-
nents. These components are the Agent, the Knowledge
Base, the Task File, the Terminal Node Controller (TNC)
and the Line of Sight Executive. These components are
individually described in this section.

3.1. The Agent

For all space operations, a certain set of functionality
is always required. These actions include data logging

Figure 5. The Overview Framework Design

and spacecraft communication. This core set of required
functionality is contained within in the Agent. The main
functions provided are

1. Transmit and log uplink packets,

2. Receive and log downlink packets,

3. Read a task list from a file.

The agent can also be further extended via Java’s inheri-
tance to incorporate additional features.

3.2. The Knowledge Base Interface

All of the intelligence for spacecraft operations is located
in the Knowledge Base. This is the primary component
to extend for a given spacecraft to implement different
autonomous systems. The following functions provide
the interface between the Knowledge Base and the Agent
(See Standard Program Execution for function usage).

1. tellNextTask(Task) : void

Tells the Knowledge Base which spacecraft Task
should be completed next as listed in the Task File.

2. askNextAction(void) : AgentAction

Queries the Knowledge Base for the next agent ac-
tion to execute (ie. next command to send).

3. tellResponse(SC Response) : void

Tells the Knowledge Base what response was re-
turned by the satellite (can be a timeout response).

Currently, a Knowledge Base must be implemented for
every satellite the framework will track. That is if the
framework is going to track both CP3 and CP6 (which
have very similar commands), there needs to be two dif-
ferent Knowledge Bases. The Knowledge Base however
is written in Java and therefore can be constructed using
polymorphism to reuse code between different satellites
of the same CPX brand.

3.3. The Task File

The spacecraft manager is able to define what tasks to
complete over a period of time using the Task File. This
Task File is currently structured with each line represent-
ing a single task followed by a parameter list. The fol-
lowing represents an example Task File.

DumpCDHData()
RunADCSExperiment(1, "MagTorque1.test")
DumpADCSExpData("MagTorque1.test")
RunADCSExperiment(2, "ExpTemps1.test")
DumpADCSExpData("ExpTemps1.test")

3.4. The TNC Interface

Since most spacecraft communicate over a radio link, op-
erations software must be able to modulate/demodulate
the digital data sent between the spacecraft and the earth
station. The modulating and demodulating of data is
commonly done using a terminal node controller (TNC).
A TNC can be a physical device such as the KPC9612+
[Kan09] or implemented in software with a program such
as MixW [Fed09]. Since each earth station is different, a
TNC driver must be created by implementing the Java
TNC interface. A default Serial TNC class is provided
since most hardware and software TNCs are implemented
using this method of communication.

3.5. Line Of Sight Executive

While external tracking software can control the Doppler
shift of the spacecraft’s frequency and control the point-
ing of the earth station’s antennas, the agent must still
know when the spacecraft is available for communica-
tion. The Line of Sight Executive encapsulates this infor-
mation in an interface which can be implemented by any
user defined class. A SGP4 implementation is provided
by default [Joh09].

3.6. Standard Program Execution

When the agent starts, it parses the entire input task file
into a serializable in-memory structure. The agent then
begins its basic control loop which is represented in the
following pseudo code.

Listing 1. The Agent’s Algorithm
1 For each t a s k t i n i n p u t f i l e do :
2 T e l l Knowledge Base t v i a t e l l N e x t T a s k (t)
3 Ask Knowledge Base n e x t a c t i o n a
4
5 While a i n n o t n u l l do :
6 Execu te a
7 T e l l Knowledge Base e x e c u t i o n r e s u l t s
8 Ask Knowledge Base n e x t a c t i o n a

This sequence is executed until all the tasks in the input
file have been completed. Once the agent has finished all
the tasks found in the Task File, the agent reads a simi-
larly formatted default Tasks File which defines what the
agent should do once all of its tasks have been completed.
This functionality is useful since most CubeSat missions
would not prefer an idle spacecraft. At the very least,
health and status data can be downlinked for later analy-
sis.

4. SAMPLE RULE BASED IMPLEMENTATION

All of the previous automated operations research has
been built using rule based systems (RBS). In order to
provide a baseline for this framework, a RBS is built and
integrated with the framework. The RBS is developed
using the Java Expert System Shell (JESS) [Lab09a].

4.1. Satellite Model

In order for the RBS to make good operation decisions, it
must always maintain a believed model of the satellite’s
state. To do this, a Java class is used to store the last
satellite snapshot and the time it was taken. This class
can then be queried for questions given the current time.
For instance, if the RBS wants to know if the satellite is
in Normal Ops, it would call

satModel.isInNormalOps(
System.currentTimeMillis())

which returns true if the satellite is believed to be in Nor-
mal Ops and false otherwise. This model is updated every
time a command is issued or a response is received. The
following fields represent some of the common parame-
ters monitored for the CPX brand of satellites.

1. Snapshot Time

2. Time Left in Normal Operations

3. Battery Voltages

4. Temperatures

An example of where these parameters are useful is when
a payload command needs to be sent. All CPX satellites
have the concept of Normal Operations (Ops) which is
the high power state required for payload command ex-
ecution. Normal Ops must be enabled by sending a Go
To Normal Ops command. For safety reasons once
the satellite is in Normal Ops, the satellite has a 3 day
inactivity timeout which will put the satellite back into
Pre Ops. Therefore, it is necessary to query the model
before sending a payload command to make sure that the
satellite is already in Normal Ops.

4.2. Task to Command List Rules

One of the simple uses for JESS is to translate a task from
the Task File into its corresponding satellite commands.
These JESS rules are straight forward to implement. The
following is an example JESS rule used to translate the
DumpCDHData task into its corresponding commands.

defrule DumpCDHData
?x <- (Task (TaskName DumpCDHData) (args ?))
(not (lowVoltage))
=> (retract ?x)
(assert (Cmd (pos 0) (CmdName ‘‘12’’)))
(assert (Cmd (pos 1) (CmdName ‘‘34’’))))

4.3. Built-In Satellite Safety

In order to protect the satellite from executing any power
intensive commands while its batteries are low, the RBS
has implemented ground-based safety checks. That is
when the Task List specifies a task which requires a
power intensive command, the RBS checks via its rules
to verify that the satellite can successfully complete the
command without browning out the satellite. If there is
not enough battery power, the RBS waits for 30 seconds
and then sends a status command to see if the satellite has
charged to a safe battery level.

4.4. Error Recovery

The previously developed systems implement error re-
covery as a basic fault decision tree. Similarly, the RBS
identifies any NACKs it receives and then analyzes the
model to determine what could be wrong. Once the RBS
believes it knows the most likely problem, it sends the
correct commands to resolve the issue. The RBS then
resumes the command sequence.

The problem with this method of problem resolution is
its inability to adapt to new problems. For instance if the
RBS resends the original command and another NACK is
received, the RBS will cycle continuously never solving
the problem correctly. To add learning functionality, the
decision tree algorithm would have to be adapted to ran-
domly create new methods for solving a problem and test
to see if the new solutions are effective. More research
must be done to determine if rule based error recovery
with learning is possible for spacecraft automation sys-
tems.

5. RESULTS

The Autonomous Spacecraft Operations Framework has
been successfully deployed for use with Cal Poly’s CP3
satellite. Most of the initial testing was conducted using
a bench model of CP3, communicating across the room
via an ICOM 910 H [Rad09] radio using the software
TNC MixW [Fed09]. Normal operational modes work
as expected as well as error handling which resolves no
satellite response errors and Nack responses. While the
system was used for real operations with the CP3 unit in
orbit, the demonstration was only mildly satisfying due
to CP3’s Comm problem which keeps Cal Poly from re-
liably commanding the satellite.

Figure 6. Cal Poly’s Earth Station Used For Testing

6. FUTURE WORK

As the autonomous spacecraft operations framework pro-
vides an extensible platform for developing AIs to con-
duct operations, the next step is to develop packages
which can be used with the framework. A learning
Knowledge Base is of immediate interest since the sys-
tem would be able to adapt to the idiosyncrasies of each
spacecraft. This package could be developed as an ex-
tension to the Knowledge Base API by creating a set of
Java class which provide empty shells for different meth-
ods of learning (ie. genetic algorithms, artificial neural
networks [RNC+95]). This work could then be validated
by extending the CP3 sample implementation to demon-
strate its learning features.

Other nice to have features include operator notification
when all tasks have been completed, a web interface to
track the progress and current state of the system re-
motely, and a HamLib [Gro09] wrapper which contains
a number of already developed drivers for radio and TNC
equipment.

7. CONCLUSION

This paper introduced the autonomous spacecraft opera-
tions framework which is a software package that pro-
vides basic support for autonomous spacecraft opera-
tions. The design philosophy behind this work was ex-
plained and a sample implementation was provided for
the Cal Poly CubeSat satellite, CP3. This implementation
has been thoroughly tested and successfully used with the
flight model of CP3 currently in orbit.

REFERENCES

[Chi09] Alex Chin. Cubesat community website.
World Wide Web, March 2009.

[CRK+00] S. Chien, G. Rabideau, R. Knight, R. Sher-
wood, B. Engelhardt, D. Mutz, T. Estlin,
B. Smith, F. Fisher, T. Barrett, et al. Aspen–
automated planning and scheduling for space
mission operations. In Space Ops, 2000.

[CST+03] S. Chien, R. Sherwood, D. Tran, R. Castano,
B. Cichy, A. Davies, G. Rabideau, N. Tang,
M. Burl, D. Mandl, et al. Autonomous Sci-
ence on the EO-1 Mission. 2003.

[EFS+04] A. Ercolani, P. Ferri, A. Simonic, A. Kowal-
czyk, and T. Ulriksen. Operations Au-
tomation for the Rosetta Mission. In The
Space Operations 2004 Conference, Mon-
treal, Canada, 2004.

[Fed09] Nick Fedoseev. Mixw - multimode software
for radio amateurs. http://www.mixw.net/,
2009.

[For09] Sandra Forsman. Genso. World Wide Web,
March 2009.

[Gro09] The Hamlib Group. Ham radio control li-
braries, 2009.

[HL91] P. M. Hughes and E. C. Luczak. The Generic
Spacecraft Analyst Assistant (GenSAA): A
Tool for Automating Spacecraft Monitoring
with Expert Systems. NASA Conference
Publication, 3110:129–+, 1991.

[HLS96] J. Hartley, E. Luczak, and D. Stump. Space-
craft control center automation using the
Generic Inferential Executor(Genie). In
International Symposium on Space Mis-
sion Operations & Ground Data Systems-
’SpaceOps 96’, 4 th, Munich, Germany,
pages 1007–1014, 1996.

[Hue06] Derek Huerta. Development of a highly in-
tegrated communication system for use in
low power space applications. Master’s the-
sis, California Polytechnic State University,
2006.

[Joh09] David Johnson. Personal correspondance
with david johnson, software developer for
black pepper software, 2009.

[KAL09] Bryan Klofas, Jason Anderson, and Kyle
Leveque. A survey of cubesat communica-
tion systems. AMSAT Journal, 2009.

[Kan09] Kantronics. Kantronics kpc-
9612+ radio modem/tnc.
http://www.kantronics.com/products/kpc9612.html,
2009.

[Lab09a] Sandia National Laboratories. Jess, the rule
engine for the javatm platform, 2009.

[Lab09b] Jet Propulsion Laboratory. Jet propulsion
laboratory: California institute of technol-
ogy. World Wide Web, March 2009.

[LJO+] D.B. LaVallee, J. Jacobsohn, C. Olsen,
J. Reilly, and MS Starkville. Intelligent Con-
trol For Spacecraft Autonomy–An Industry
Survey.

[LK03] D. LaVallee and W. Knopf. TIMED lights
out operations. In Aerospace Conference,
2003. Proceedings. 2003 IEEE, volume 7,
2003.

[Rad09] Universal Radio. Icom 910h ama-
teur multi-mode vhf uhf transceiver
ic-910h ux-910. http://www.universal-
radio.com/CATALOG/hammulti/1910.html,
2009.

[Ril09] Gary Riley. Clips: A tool for building expert
systems, 2009.

[RNC+95] S.J. Russell, P. Norvig, J.F. Canny, J. Malik,
and D.D. Edwards. Artificial intelligence: a
modern approach. Prentice hall Englewood
Cliffs, NJ, 1995.

[SK07] Graham Shirville and Bryan Klofas.
GENSO: A Global Ground Station Network.
In Proceedings of the AMSAT-NA 21st Space
Symposium, 2007.

[THK99] W. Truszkowski, H. Hallock, and J. Kurien.
Agent Technology from a NASA Perspec-
tive. LECTURE NOTES IN COMPUTER
SCIENCE, pages 1–33, 1999.

[Tho03] R.J. Thompson. Correspondance with r.j.
thompson, chief of the usgs earth resource
observation systems data center, sioux falls,
s.d., 2003.

[Too07] Armen Toorian. Redesign of the poly pi-
cosatellite orbital deployer for the dnepr
launch vehicle. Master’s thesis, California
Polytechnic State University, 2007.

[TV09] Direct TV. Direct tv: Satellite television.
World Wide Web, March 2009.

